必威体育

  • 您好,betway必威体育欢迎您!
  •  
  •  
  •  
  •  

您的位置: > 技术学院 > 技术中心 >

进阶篇来了!看这几种OLED结构是如何修炼而成的

编辑:liuchang 2018-05-04 14:03 浏览 评论 评论 0 赞    来源:  betway必威体育

  穿透式与上发光型OLED结构

  一般OLED器件的光都是经由基板射出,也就是下发光型。而所谓的上发光型就是光不是经过底下基板而是从其反面射出。如果基板之上为高反射的阳极,而阴极是透光的,则光是经由表面的阴电极放光。阳极材料若还是使用传统的透明ITO阳极,搭配透明阴极则器件的两面都会发光,也就是所谓的穿透式器件。

进阶篇来了!看这几种OLED结构是如何修炼而成的

(a)上发光型器件;(b)下发光型器件;(c)穿透式器件

  由于主动式OLED发光器件是有薄膜晶体来控制的,因此如果器件是以下发光形式放光,光经过基板时势必会被建立在基板上的TFT和金属线电路所挡住,所以实际发光的面积就会受到限制,缩减可以发光的面积所占的比率,也就是所谓的开口率。

进阶篇来了!看这几种OLED结构是如何修炼而成的

  穿透式器件的优势在于,不显示信息时面板是半透明的,显示信息时从两面都可接收到信息。

  利用此特性,其应用与设计可以更灵活。穿透式与上发光型器件的发展必须先将阴极的透射率提高,因为光是透过阴极发出,因此阴极的透射率决定了器件出光的多少。而阴极通常都是由金属组成,透射率要高则势必要把金属厚度变薄,太薄无法导电,且会影响器件的工作稳定性,因此透光度受到一定的限制。

  1.1透明阴极发展介绍

  在穿透式和上发光器件中,最重要的就是透明阴极。要让光从阴极发出,最直接的做法就是将下发光器件的阴极镀薄,这样就不用考虑功函数的问题所以通常会再加上透明导电的ITO做辅助电极并同时增加阴极导电性,然而在有机层上溅镀ITO又不破坏器件不是容易的事,在这方面还需要许多的技术来克服。

进阶篇来了!看这几种OLED结构是如何修炼而成的

  1996年,Forrest等人率先使用10nm的Mg:Ag(30:1)加上40nm的ITO当成半透明阴极,其透射率在可见光区大约为70%。所制成的器件上下都发光,外部量子效率加起来约0.1%。同时,溅射ITO的功率只有5W,沉积速率只有0.3nm/min,溅射40nm需要超过2h;而且薄的金属层不足以抵挡溅射过程对有机层的破坏,分子键被打断,能级发生变化。

进阶篇来了!看这几种OLED结构是如何修炼而成的

第一个具透明阴极的穿透式器件结构和EL光谱

  以上溅镀ITO的制程,往往费时又要考虑溅镀时OLED器件可能受到的损坏,就采用热蒸镀的方法。

  —2001年Hung和Tang等人利用热蒸镀金属完全取代ITO的溅镀制程。 —2003年,Han等人利用半透明的电荷注入层LiF(0.5nm)/Al(3nm)/Al:SiO(30nm)作为上发光型器件的阴极,Al:SiO不但具有好的透射率,更可以当作防止溅镀ITO造成器件损坏的缓冲层。 —2004年,Canon发表新的电子输运材料c-ETM,搭配碳酸铯掺杂物作为n-掺杂的电子注入层。

  综上所述,透明阴极的透明度与导电度是一个重要的考量因素,对穿透式器件来说要达到两边出光亮一致,透明阴极需要有很好的透射性,且避免使用在可见光区有吸收的材料(如金属),而非金属阴极(如ITO)的溅镀需要非常小心地控制,避免OLED器件受到损坏。如果使用热蒸镀的薄金属阴极,太薄则导电度不好,太厚则透射性不佳,对于上发光型器件来说又会造成微共振腔效应,器件的光学设计需要进一步考虑。

  1.2上发光型器件阳极

  OLED的阳极通常都是由高功函数的材料所组成的。而上发光型器件中,阳极必须具有反射性。Au(5.1)、Ni(5.15)、Pt(5.65)功函数较高但反射率只有50%~60%,Al(4.28)、Ag(4.26)反射率90%以上但功函数稍低,通常要搭配合适功函数的材料,如Al/ITO、Ag/ITO或是Al/Ni、Al/Pt。或使用适合的空穴注入材料。CFx、MoOx、利用UV-ozone处理Ag表面形成薄膜 (4.8~5.1eV)。

  虽然高功函数阳极的空穴注入性能较好,但是只要选择适当的空穴注入层,上发光型器件的效率往往由阳极的反射率来决定。

  显示以不同反射率的金属为阳极与器件效率的关系,其中以高反射的铝和银当作阳极,器件效率可以是下发光型器件的1.6倍。如果以反射率80%的镁当作阳极时效率也还超过下发光型器件。而其他反射率较低的金属,效率都比下发光型器件低,因此高反射阳极还是主流。

进阶篇来了!看这几种OLED结构是如何修炼而成的

阳极反射率对器件效率影响的模拟图

  1.3不发生等离子体损伤的溅镀系统

  为了在有机层上溅镀透明且导电性好的ITO,不少研究者吃尽了苦头。为解决这问题,除了溅镀保护层外,还可以从两方面着手,一是改进电子或空穴输运材料的热稳定性,并使之可以抵挡溅镀时高能量粒子(如反射的Ar原子、γ电子、带电离子)的破坏;另外则是发展特殊的溅镀系统,使有机膜损伤降到最低。

  对向靶溅镀系统是近来引人注意的溅镀技术,其结构如图所示,与传统的溅镀腔体不同的是,基板不是面向靶材表面,而是与靶材面成90°的关系,高能量的粒子被磁场限制在等离子体内,因此可以使损伤降到最低。Samsung在SDI2004年发表了以此技术溅镀ITO和Al的结果,可以在基板无加热下,得到电阻率为6×10-4Ω·cm,且透射率大于85%的ITO薄膜。而与DC溅镀Al阴极的器相比,对向靶溅镀不会造成器件有明显的漏电,与热蒸镀阴极的器件几乎一样。

进阶篇来了!看这几种OLED结构是如何修炼而成的

  1.4微共振腔效应

  所谓微共振腔效应就是器件内部的光学干扰,在OLED中,不论是上发光型或是下发光型器件,都存在程度不一的共振腔效应,微共振腔效应主要是指不同能态的光子密度被重新分配,使得只有特定波长的光在符合共振腔模式后,得以在特定的角度射出,因此光波的半高宽(FWHM)也会变窄,在不同角度的强度和光波波长也会不同。但在适当控制下,可使得上发光型器件的色纯度和效率都比下发光型器件大幅提升。

  下发光型器件:阴极高反射率,阳极高透过率,大部分光直接从透明电极出射,一部分由高反射率的电极全反射,如图8-6(a),此时的干涉现象大致属于广角干涉。

  上发光型器件:阴极为半透明金属,光的反射增加,造成多光束干涉,微腔效应更明显。发光强度和发光颜色会随视角而改变。

进阶篇来了!看这几种OLED结构是如何修炼而成的

关注我们

公众号:china_tp

微信名称:亚威资讯

显示行业顶级新媒体

扫一扫即可关注我们

网站地图